

Linear Systems Notes (2023/2024)

Griffin Reimerink

Contents

1 Ordinary differential equations	2
1.1 First-order scalar ODEs	2
1.2 Linear scalar ODEs	2
1.3 Systems of differential equations	2
2 Linear systems	3
2.1 Nonlinear systems	3
3 Solutions of linear systems	3
3.1 The matrix exponential	3
3.2 Jordan canonical form	4
3.3 Solutions of linear systems	6
4 Stability, controllability and observability	6
4.1 Stability	6
4.2 Controllability	7
4.3 Observability	8
4.4 Similarity	9
4.5 Canonical forms	9
4.6 Controllable and observable eigenvalues	10
5 Stabilization	10
5.1 Stabilization by static state feedback	10
5.2 State observers	11
5.3 Stabilization by dynamic output feedback	12
6 Input-output properties	12
6.1 Impulse response matrix	12
6.2 Transfer functions	13
6.3 Transfer functions for SISO systems	14
6.4 External stability	14

1 Ordinary differential equations

1.1 First-order scalar ODEs

Definition *Scalar first-order ODE*

A **scalar first-order ODE** is of the form $\dot{x}(t) = f(t, x(t))$

with independent variable t , dependent variable x and $f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R}$.

A function $x : J \subset \mathbb{R} \rightarrow \mathbb{R}$ is a **solution** to the scalar first-order ODE if 3 conditions are satisfied:

1. $(t, x(t)) \in D$ for all $t \in J$
2. x is differentiable
3. $\dot{x}(t) = f(t, x(t))$ for all $t \in J$

This solution is not unique. To fix a specific solution, we can add the **initial value** $x(t_0) = x_0$

Lemma *Solution of a scalar first-order ODE*

Equations of the form $\dot{x} = f(t)$

The solution of $\dot{x} = f(t)$ is the antiderivative of f .

With the initial condition $x(t_0) = x_0$ we have $x(t) = x_0 + \int_{t_0}^t f(t) dt$

Equations of the form $\dot{x} = g(x)$ (Autonomous ODE)

For $g(x) \neq 0$, any solution to $\dot{x}(t) = g(x)$ is of the form $H(x) = t + \tau$ with $\frac{dH}{dx}(x) = \frac{1}{g(x)}$, $\tau \in \mathbb{R}$

Equations of the form $\dot{x} = f(t)g(x)$ (Separable ODE)

Equations of the form $\dot{x} = f(t)g(x)$ can be rewritten as $\frac{1}{g(x)} dx = f(t) dt$

and then solved by integrating both sides: $\int \frac{1}{g(x)} dx = \int f(t) dt$

1.2 Linear scalar ODEs

Definition *Linear scalar ODE*

A **linear scalar ODE** is of the form $\dot{x}(t) = a(t)x(t) + b(t)$ with $a, b : J \rightarrow \mathbb{R}$ continuous.

It is **homogeneous** if $b(t) = 0$ for all $t \in J$ and **inhomogeneous** otherwise.

We can define a linear operator $L(x) = \dot{x} - a(t)x$ to rewrite the ODE as $L(x) = b$.

Lemma *Solution of a linear scalar ODE*

Homogeneous case

The solutions to $\dot{x}(t) = a(t)x(t)$ are given by $x(t) = Ce^{F(t)}$, $F(t) = \int a(t) dt$

With the initial condition $x(t_0) = x_0$, we have $x(t) = x_0 e^{F(t)}$, $F(t) = \int_{t_0}^t a(\tau) d\tau$

Inhomogeneous case

The solutions to $\dot{x}(t) = a(t)x(t) + b(t)$ are given by $x(t) = Ce^{F(t)} + e^{F(t)} \int e^{-F(t)} b(t) dt$, $F(t) = \int a(t) dt$

With the initial condition $x(t_0) = x_0$, we have $x(t) = x_0 e^{F(t)} + e^{F(t)} \int_{t_0}^t e^{-F(t)} b(t) dt$, $F(t) = \int_{t_0}^t a(\tau) d\tau$

The solutions to the initial value problems are unique.

Theorem

The difference of two solutions of the inhomogeneous case is a solution to the homogeneous case.

1.3 Systems of differential equations

Definition *System of differential equations*

A **system of differential equations** is of the form $\dot{x}(t) = f(t, x(t))$

$$\text{where } x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } f(t, x) = \begin{bmatrix} f_1(t, x_1, x_2, \dots, x_n) \\ f_2(t, x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(t, x_1, x_2, \dots, x_n) \end{bmatrix}, f : D \rightarrow \mathbb{R}, D \subset \mathbb{R} \times \mathbb{R}^n$$

Definition Higher-order differential equations

Denote $y^{(k)} = \frac{d^k y}{dt^k}(t)$. Consider $y^{(k)}(t) = f(t, y(t), \dot{y}(t), \dots, y^{(k-1)}(t))$.

Introduce the vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(k-1)} \end{bmatrix}$ Then $\dot{\mathbf{x}} = \begin{bmatrix} x_2 \\ \vdots \\ x_n \\ f(t, \mathbf{x}) \end{bmatrix}$

2 Linear systems

Definition Linear system (state-space form)

A **linear system** is a system of the form $\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases}$

where \mathbf{x} is the **state**, \mathbf{u} is the **input** and \mathbf{y} is the **output**.

2.1 Nonlinear systems

Definition Nonlinear system (state-space form)

A **nonlinear system** is a system of the form $\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{y}(t) = h(\mathbf{x}(t), \mathbf{u}(t)) \end{cases}$

where \mathbf{x} is the **state**, \mathbf{u} is the **input** and \mathbf{y} is the **output**.

Definition Equilibrium

Let $u(t) = \bar{u}$ be constant. Then, $\bar{x} \in \mathbb{R}^n$ is an **equilibrium** for \bar{u} if $f(\bar{x}, \bar{u}) = 0$

Definition Linearization

The **linearization** of the nonlinear system Σ is of the form $\begin{cases} \dot{\tilde{x}}(t) = A\tilde{x}(t) + B\tilde{u}(t) \\ \tilde{y}(t) = C\tilde{x}(t) + D\tilde{u}(t) \end{cases}$

with $\tilde{x} = x(t) - \bar{x}$, $\tilde{u} = u(t) - \bar{u}$, $\tilde{y} = y(t) - \bar{y}$, $A = \frac{\partial f}{\partial x}(\bar{x}, \bar{u})$, $B = \frac{\partial f}{\partial u}(\bar{x}, \bar{u})$, $C = \frac{\partial h}{\partial x}(\bar{x}, \bar{u})$, $D = \frac{\partial h}{\partial u}(\bar{x}, \bar{u})$, where $\bar{y} = h(\bar{x}, \bar{u})$ and A, B, C, D are (not necessarily square) Jacobian matrices.

3 Solutions of linear systems

3.1 The matrix exponential

Definition Matrix exponential

For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, we have $e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$

Definition Matrix norm

Let $A \in \mathbb{F}^{n \times n}$. Then $\|A\| = \sup \left\{ \frac{|Ax|}{|x|} \mid x \neq 0 \right\} = \sup \{|Ax| \mid |x| = 1\}$

Lemma Properties of the matrix exponential

Let $A, B \in \mathbb{C}^{n \times n}$ and $t, s \in \mathbb{R}$.

1. $\frac{d}{dt} e^{At} = Ae^{At} = e^{At}A$
2. e^{At} is invertible, and $(e^{At})^{-1} = e^{-At}$
3. If $AB = BA$, then $e^{At}B = Be^{At}$
4. If $AB = BA$, then $e^{At}e^{Bt} = e^{(A+B)t}$
5. $e^{At}e^{As} = e^{A(t+s)}$
6. $(e^{At})^T = e^{A^Tt}$

Lemma

Let $T \in \mathbb{C}^{n \times n}$ be nonsingular and $A \in \mathbb{C}^{n \times n}$. Then $e^{TAT^{-1}t} = Te^{At}T^{-1}$

Lemma

Let A be diagonalizable. Then $A = T\Lambda T^{-1}$, where T has the eigenvectors of A as columns, and Λ is a diagonal matrix containing the eigenvalues of A .

Theorem

Let $A \in \mathbb{R}^{n \times n}$. Then,

$$e^{A(t-t_0)}x_0 = \sum_{i=1}^n c_i v_i e^{\lambda_i(t-t_0)}$$

for some constants $c_1, c_2, \dots, c_n \in \mathbb{C}$ and (λ_i, v_i) eigenpairs of A , i.e. $Av_i = \lambda_i v_i$

3.2 Jordan canonical form

Definition Spectrum

The **spectrum** of $A \in \mathbb{C}^{m \times n}$, denoted $\sigma(A)$, is the set of eigenvalues of A .

We denote the **characteristic polynomial** $\det(\lambda I - A)$ by $\Delta_A(\lambda)$.

Definition Jordan block

A **Jordan block** $J_k(\lambda) \in \mathbb{C}^{k \times k}$ is equal to $\lambda I + N$, where N has ones on the upper diagonal. $N^k = 0$.

Lemma

$$e^{J_k(\lambda)t} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{k-2}}{(k-2)!} \\ 0 & 0 & 1 & \cdots & \frac{t^{k-3}}{(k-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Theorem Jordan canonical form

For any $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular $T \in \mathbb{C}^{n \times n}$ such that $A = TJT^{-1}$ with

$$J = \begin{bmatrix} J_{k_1}(\lambda_1) & & & & \\ & J_{k_2}(\lambda_2) & & & \\ & & \ddots & & \\ & & & & J_{k_r}(\lambda_r) \end{bmatrix}$$

with $\lambda_i \in \sigma(A)$. Conversely, if $\lambda \in \sigma(A)$, then $\lambda = \lambda_i$ for some $i \in \{1, 2, \dots, r\}$

Definition Multiplicities

For $\lambda \in \sigma(A)$,

1. its **algebraic multiplicity** a_λ is its multiplicity as a root of Δ_A
2. its **geometric multiplicity** g_λ is the dimension of its **eigenspace** E_λ
where $E_\lambda = \{v \in \mathbb{C}^n \mid (A - \lambda I)v = 0\}$

Properties of multiplicities

$$\sum_{\lambda \in \sigma(A)} a_\lambda = n \quad 1 \leq g_\lambda \leq a_\lambda \quad \forall \lambda \in \sigma(A)$$

Theorem

A is diagonalizable if and only if $a_\lambda = g_\lambda$ for all $\lambda \in \sigma(A)$

Definition Generalized eigenspace

The **generalized eigenspace** of $\lambda \in \sigma(A)$ is

$$K_\lambda = \{v \in \mathbb{C}^n \mid (A - \lambda I)^p v = 0 \text{ for some integer } p > 0\}$$

Theorem Properties of the generalized eigenspace

Let $A \in \mathbb{C}^{n \times n}$ and $\lambda \in \sigma(A)$.

1. $\dim K_\lambda = a_\lambda$
2. $K_\lambda \cap K_{\lambda'} = \{0\}$ for any distinct $\lambda, \lambda' \in \sigma(A)$
3. K_λ is **A -invariant**, i.e. $v \in K_\lambda \implies Av \in K_\lambda$

Definition Cycle

Let $\lambda \in \sigma(A), v \in K_\lambda$. Let k be the smallest integer such that $(A - \lambda I)^k v = 0$. Then, $\{(A - \lambda I)^{k-1}v, (A - \lambda I)^{k-2}v, \dots, v\}$ is called a **cycle** of generalized eigenvectors.

Theorem

Let $\lambda \in \sigma(A)$. Then K_λ has a basis consisting of cycles.

Definition Dot diagram

Let $\lambda \in \sigma(A)$ and

- $r_{\lambda,1} = n - \text{rank}(A - \lambda I) = g_\lambda$
- $r_{\lambda,1} = \text{rank}(A - \lambda I)^{j-1} - \text{rank}(A - \lambda I)^j$

To construct the dot diagram, we put $r_{\lambda,i}$ dots (left-aligned) in the i th row for all i .

Theorem Properties of the dot diagram

Let $\lambda \in \sigma(A)$ and consider the dot diagram.

1. # columns = # independent cycles in $K_\lambda = g_\lambda$
2. # dots in each column = length of the corresponding cycle
3. # dots = a_λ

Algorithm Computation of the Jordan canonical form

If only J needs to be computed, skip steps 2c and 4.

1. Compute λ_i and a_{λ_i}
2. For each λ_i :
 - (a) compute $\text{rank}(A - \lambda I)^j$ for integers $j > 0$, stop when the difference between ranks is 0
 - (b) construct the dot diagram by definition
 - (c) compute each cycle by definition (such that the v 's are linearly independent)
3. Use the dot diagram for each λ to form J
 - (a) The number of Jordan blocks corresponding to λ_i is the number of columns of its dot diagram.
 - (b) The size of each Jordan block is the number of dots in its corresponding column.
4. Use the corresponding cycles to form T (the columns of T are the vectors contained in the cycles)

3.3 Solutions of linear systems

Algorithm Computation of e^{At}

1. Compute the eigenvalues of A . If they are distinct, also compute the eigenvectors.

2. If A is diagonalizable:

(a) Compute the diagonalization $A = T\Lambda T^{-1}$

T has the eigenvectors as columns and Λ has the eigenvalues on the diagonal.

(b) Compute e^{At} using $e^{At} = e^{T\Lambda T^{-1}t} = Te^{\Lambda t}T^{-1}$

Λ is a diagonal matrix and therefore $e^{\Lambda t}$ can be computed entry-wise.

3. If A is not diagonalizable:

(a) Compute the Jordan canonical form $A = TJT^{-1}$

(b) For each Jordan block, compute $e^{J_{k_i}(\lambda_i)t}$

(c) Compute e^{At} using $e^{At} = e^{TJT^{-1}t} = Te^{Jt}T^{-1} = T \begin{bmatrix} e^{J_{k_1}(\lambda_1)t} & & 0 \\ & \ddots & \\ 0 & & e^{J_{k_r}(\lambda_r)t} \end{bmatrix} T^{-1}$

Theorem Unique solution of a linear system

Homogeneous case

Consider $\dot{x}(t) = Ax(t)$, $x(t_0) = x_0$ for $A \in \mathbb{R}^{n \times n}$.

The unique solution is:

$$x(t; t_0, x_0) = e^{A(t-t_0)}x_0$$

Inhomogeneous case

Consider $\dot{x}(t) = Ax(t) + Bu(t)$, $x(t_0) = x_0$ for $u : J \rightarrow \mathbb{R}^m$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

The unique solution is:

$$x(t; t_0, x_0, u) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau$$

4 Stability, controllability and observability

4.1 Stability

Definition Stability

The system $\dot{x}(t) = Ax(t)$ is called

1. **stable** if for all $x_0 \in \mathbb{R}$, there exists $M > 0$ such that $|x(t; x_0)| \leq M$ for all $t \geq 0$
2. **asymptotically stable** if for all $x_0 \in \mathbb{R}$, $\lim_{n \rightarrow \infty} tx(t; x_0) = 0$

Observations

Let $(e^{At})_{ij}$ denote element i, j of e^{At}

1. $|(e^{At})_{ij}| \leq m \quad \forall i, j \implies \dot{x}(t) = Ax(t)$ is stable
2. $\lim_{n \rightarrow \infty} t(e^{At})_{ij} = 0 \quad \forall i, j \implies \dot{x}(t) = Ax(t)$ is asymptotically stable
3. By the Jordan canonical form, each $(e^{At})_{ij}$ is a sum of terms of the form $t^k e^{\lambda t}$ where λ is an eigenvalue of A and k is a nonnegative integer.

Lemma

Consider $t \mapsto t^k e^{\lambda t}$ with $k \geq 0$

1. If $\Re(\lambda) < 0$, then $\lim_{n \rightarrow \infty} tt^k e^{\lambda t} = 0$ and $|t^k e^{\lambda t}| \leq M$ for all $t \geq 0$
2. For any $\alpha \in \mathbb{R}$ such that $\Re(\lambda) < \alpha$, $|t^k e^{\lambda t}| \leq M e^{\alpha t}$ for all $t \geq 0$

Definition

$$\mathbb{C}_- = \{z \in \mathbb{C} \mid \Re(z) < 0\} \quad \overline{\mathbb{C}}_- = \{z \in \mathbb{C} \mid \Re(z) \leq 0\}$$

Theorem

The system $\dot{x}(t) = Ax(t)$ is

1. stable if and only if $\sigma(A) \subset \overline{\mathbb{C}}_-$ and every λ with $\Re(\lambda) = 0$ is **semisimple**, i.e. $\alpha(\lambda) = \gamma(\lambda)$
2. asymptotically stable if and only if $\sigma(A) \subset \mathbb{C}_-$

Definition Stability of polynomials

A polynomial $p(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$ with $a_i \in \mathbb{R}$, $a_n \neq 0$ is called **stable** if all roots have negative real parts.

Theorem

The system $\dot{x}(t) = Ax(t)$ is asymptotically stable \iff the characteristic polynomial of A is stable

Theorem Routh-Hurwitz condition

The polynomial $p(s)$ is stable if and only if:

1. $a_{n-1} \neq 0$ and has the same sign as a_n .
2. the polynomial $q(s) = a_{n-1}p(s) - a_n(a_{n-1}s^n + a_{n-3}s^{n-2} + a_{n-5}s^{n-4} + \dots)$ is stable

Lemma

Let $p(s)$ with $a_i \in \mathbb{R}$ be stable. Then all a_i are nonzero and have the same sign.

Theorem Kharitonov's theorem

Let a_i^- , $a_i^+ \in \mathbb{R}$, $i \in \{0, 1, \dots, n\}$ satisfy $a_i^- \leq a_i^+$.

Define $\mathcal{P}(s) = \{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 \mid a_i^- \leq a_i \leq a_i^+ \text{ for all } i \in \{0, 1, \dots, n\}\}$

\mathcal{P} is stable (i.e. all polynomials in \mathcal{P} are stable) if and only if the following 4 polynomials are all stable:

$$\begin{aligned} p^{++}(s) &= a_0^+ + a_1^+ s + a_2^- s^2 + a_3^- s^3 + a_4^+ s^4 + a_5^+ s^5 + a_6^- s^6 + \dots \\ p^{+-}(s) &= a_0^+ + a_1^- s + a_2^- s^2 + a_3^+ s^3 + a_4^+ s^4 + a_5^- s^5 + a_6^- s^6 + \dots \\ p^{-+}(s) &= a_0^- + a_1^+ s + a_2^+ s^2 + a_3^- s^3 + a_4^- s^4 + a_5^+ s^5 + a_6^+ s^6 + \dots \\ p^{--}(s) &= a_0^- + a_1^- s + a_2^+ s^2 + a_3^+ s^3 + a_4^- s^4 + a_5^- s^5 + a_6^+ s^6 + \dots \end{aligned}$$

4.2 Controllability

Consider the linear system $\Sigma : \dot{x}(t) = Ax(t) + Bu(t)$

Definition Reachability

$x_f \in \mathbb{R}^n$ is **reachable** at time $T > 0$

if there exists an input function $u : [0, T] \rightarrow \mathbb{R}^m$ such that $x(T; 0, u) = x_f$

Definition Reachable subspace

$$W_T = \{x_f \in \mathbb{R}^n \mid x_f \text{ is reachable at } T\}$$

Definition Reachability of a system

Σ is reachable at time $T > 0$ if $W_T = \mathbb{R}^n$

Theorem

Let $v \in \mathbb{R}$ and $T > 0$. The following statements are equivalent:

1. $v^T x = 0$ for all $x \in W_T$
2. $v^T e^{At} B = 0$ for all $0 \leq t \leq T$
3. $v^T A^k B = 0$ for all $k \in \{0, 1, 2, \dots\}$
4. $v^T [B \ AB \ A^2 B \ \dots \ A^{n-1} B] = 0$

Theorem

W_T is independent of T for $T > 0$ and $W_T = \text{im} [B \ AB \ A^2 B \ \dots \ A^{n-1} B]$

Definition *Controllability*

Σ is **controllable** at $T > 0$ if for any $x_0, x_f \in \mathbb{R}^n$, there exists $u : [0, T] \rightarrow \mathbb{R}^m$ s.t. $x(T; x_0, u) = x_f$

Theorem

Σ is controllable at $T > 0$ if and only if Σ is reachable at $T > 0$

Theorem

The following are equivalent:

1. $\exists T > 0$ s.t. Σ is controllable at T
2. Σ is controllable at T for all $T > 0$
3. $W = \mathbb{R}^n$
4. $\text{rank} [B \ AB \ A^2B \ \dots \ A^{n-1}B] = n$

4.3 Observability

Consider the linear system $\Sigma : \dot{x}(t) = Ax(t), y = Cx(t)$

Definition *Indistinguishable initial conditions*

$x_0, x'_0 \in \mathbb{R}^n$ are **indistinguishable** on $[0, T]$ if $y(t; x_0) = y(t; x'_0)$ for all $t \in [0, T]$

Definition *Unobservable subspace*

$N_T = \{x \in \mathbb{R}^n \mid x \text{ and } 0 \text{ are indistinguishable on } [0, T]\}$

Theorem

Let $T > 0$. The following are equivalent:

1. $x \in N_T$
2. $Ce^{At}x = 0$ for all $t \in [0, T]$
3. $CA^kx = 0$ for all $k \in \{0, 1, 2, \dots\}$
4. $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x = 0$

Theorem

N_T is independent of T for $T > 0$ and $N_T = \ker \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$

Definition *Observability*

Σ is **observable** on $[0, T]$ if $x_0, x'_0 \in \mathbb{R}^n$ are indistinguishable on $[0, T]$ only if $x_0 = x'_0$

Theorem

The following are equivalent:

1. $\exists T > 0$ s.t. Σ is observable on $[0, T]$
2. Σ is observable on $[0, T]$ for all $T > 0$
3. $N = \{0\}$
4. $\text{rank} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$

4.4 Similarity

Definition Similarity

$\Sigma(A, B, C, D)$ and $\Sigma(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ are **similar** if there exists a nonsingular T such that

$$\bar{A} = TAT^{-1} \quad \bar{B} = TB \quad \bar{C} = CT^{-1} \quad \bar{D} = D$$

Theorem

Let $\Sigma(A, B)$ and $\Sigma(\bar{A}, \bar{B})$ be similar. Let $\Sigma(A, C)$ and $\Sigma(\bar{A}, \bar{C})$ be similar. Then,

$$\Sigma(A, B) \text{ is controllable} \iff \Sigma(\bar{A}, \bar{B}) \text{ is controllable}$$

$$\Sigma(A, C) \text{ is observable} \iff \Sigma(\bar{A}, \bar{C}) \text{ is observable}$$

Definition A -invariance

Let $A \in \mathbb{R}^{n \times n}$ and let $V \subset \mathbb{R}^n$ be a subspace.

Then, V is **A -invariant** if $x \in V \implies Ax \in V$ (notation: $AV \subset V$)

4.5 Canonical forms

Theorem

W is the smallest A -invariant subspace containing the image of B .

(*smallest* means that W is a subset of any other subspace satisfying the condition.)

Theorem Canonical form for uncontrollable systems

Consider $\Sigma(A, B)$ and let $k = \dim W < n$. Then there exists a nonsingular $T \in \mathbb{R}^{n \times n}$ such that

$$TAT^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \quad TB = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

with $A_{11} \in \mathbb{R}^{k \times k}$, $B_1 \in \mathbb{R}^{k \times m}$ and $\Sigma(A_{11}, B_1)$ controllable.

Theorem Canonical form for unobservable systems

Consider $\Sigma(A, C)$ and let $k = \dim N < n$. Then there exists a nonsingular $T \in \mathbb{R}^{n \times n}$ such that

$$TAT^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \quad CT^{-1} = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

with $A_{11} \in \mathbb{R}^{k \times k}$, $C_1 \in \mathbb{R}^{p \times k}$ and $\Sigma(A_{11}, C_1)$ observable.

Theorem Controllability canonical form

Let $\Sigma(A, B)$ with $u(t) \in \mathbb{R}$, $x(t) \in \mathbb{R}^{n \times n}$ be controllable.

Then, there exists a nonsingular $T \in \mathbb{R}^{n \times n}$ such that

$$TAT^{-1} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \quad TB = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

where $a_i \in \mathbb{R}$ and $\Delta_A(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$

Theorem Observability canonical form

Let $\Sigma(A, C)$ with $y(t) \in \mathbb{R}$, $x(t) \in \mathbb{R}^{n \times n}$ be controllable.
Then, there exists a nonsingular $T \in \mathbb{R}^{n \times n}$ such that

$$TAT^{-1} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \ddots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -a_{n-2} \\ 0 & 0 & \cdots & 0 & 1 & -a_{n-1} \end{bmatrix} \quad CT^{-1} = [0 \ 0 \ \cdots \ 0 \ 0 \ 1]$$

where $a_i \in \mathbb{R}$ and $\Delta_A(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$

Algorithm Computation of the controllability canonical form

1. Verify controllability
2. Compute the characteristic polynomial of A
3. Compute T using $T^{-1} = [q_1 \ q_2 \ \cdots \ q_n]$
where $q_n = B$, $q_{n-1} = AB + a_{n-1}B$, $q_{n-2} = A^2B + a_{n-1}AB + a_{n-2}B$, ...
and $\Delta_A(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$

4.6 Controllable and observable eigenvalues

Definition Controllable and observable eigenvalues

$\lambda \in \sigma(A)$ is (A, B) controllable if $\text{rank} [A - \lambda I \ B] = n$

$\lambda \in \sigma(A)$ is (A, C) observable if $\text{rank} \begin{bmatrix} A - \lambda I \\ C \end{bmatrix} = n$

Theorem Hautus test

$\Sigma(A, B)$ is controllable if and only if $\text{rank} [A - \lambda I \ B] = n$ for all $\lambda \in \sigma(A)$.

$\Sigma(A, B)$ is observable if and only if $\text{rank} \begin{bmatrix} A - \lambda I \\ C \end{bmatrix} = n$ for all $\lambda \in \sigma(A)$.

5 Stabilization

5.1 Stabilization by static state feedback

Definition Closed-loop system

Let $u(t) = Fx(t)$ with $F \in \mathbb{R}^{m \times n}$. Then $\Sigma(A, B) : \dot{x}(t) = (A + BF)x(t)$ is a **closed-loop system**.

Theorem Pole placement theorem

The following are equivalent:

1. $\Sigma(A, B)$ is controllable
2. For any monic polynomial p of degree n , there exists $F \in \mathbb{R}^{m \times n}$ such that $\Delta_{A+BF}(s) = p(s)$

Algorithm Computation of the static state feedback controller given $\sigma(A + BF)$

1. Verify controllability
2. Compute the characteristic polynomial of A
3. Compute T (controllability canonical form)
4. Find the characteristic polynomial p that corresponds to $\sigma(A + BF)$
5. Compute $\bar{F} = FT^{-1} = [f_0 \ f_1 \ \cdots \ f_{n-2} \ f_{n-1}]$ where $f_i = a_i - p_i$,
 p_i are the coefficients of p and a_i are the coefficients of Δ_A
6. Transform \bar{F} to the original coordinates (solve $\bar{F} = FT^{-1}$ for F)

Definition Stabilizability

Σ is **stabilizable** if there exists $F \in \mathbb{R}^{m \times n}$ such that $\sigma(A + BF) \subset \mathbb{C}_-$

Theorem

$\Sigma(A, B)$ is stabilizable if and only if every $\lambda \in \sigma(A)$ satisfying $\lambda \notin \mathbb{C}_-$ is (A, B) -controllable.

Theorem Hautus test for stabilizability

$\Sigma(A, B)$ is stabilizable if and only if $\text{rank} [A - \lambda I \quad B] = n$ for all $\lambda \in \sigma(A)$ such that $\Re(\lambda) \geq 0$

5.2 State observers

Definition State observer

Let Ω be a linear system of the form $\begin{cases} \dot{w}(t) = Pw(t) + Qu(t) + Ry(t) \\ \xi(t) = Sw(t) \end{cases}$

with $w(t) \in \mathbb{R}^{n_w}$, $\xi \in \mathbb{R}^n$ and $e(t) = \xi(t) - x(t)$.

Ω is a **state observer** if for any pair of initial conditions x_0, w_0 such that $e(0) = Sw_0 - x_0 = 0$ and for any input function $u(t)$, $e(t) = 0$ for all $t \geq 0$.

Definition Stable state observer

A state observer Ω is **stable** if for any pair of initial conditions and any input function $u(t)$, $\lim_{n \rightarrow \infty} te(t) = 0$

Theorem

Ω is a state observer if and only if $SQ = B$ and $SP = AS - SRCS$.

Theorem General form of a state observer

The general form of a state observer for Σ is $\dot{\xi}(t) = (A - GC)\xi(t) + Bu(t) + Gy(t)$.

The estimation error satisfies $\dot{e}(t) = (A - GC)e(t)$.

The state observer is stable if and only if $\sigma(A - GC) \subset \mathbb{C}_-$.

Definition Detectability

Σ is **detectable** if there exists $G \in \mathbb{R}^{n \times p}$ such that $\sigma(A - GC) \subset \mathbb{C}_-$

Lemma

(A, C) is detectable $\iff (A^T, C^T)$ is stabilizable

Theorem Hautus test for detectability

$\Sigma(A, B)$ is detectable if and only if $\text{rank} \begin{bmatrix} A - \lambda I \\ C \end{bmatrix} = n$ for all $\lambda \in \sigma(A)$ such that $\Re(\lambda) \geq 0$

Corollary

Consider Σ . The following are equivalent:

1. There exists a stable state observer for Σ
2. Σ is detectable
3. Every $\lambda \in \sigma(A)$ such that $\lambda \notin \mathbb{C}_-$ is (A, C) observable

5.3 Stabilization by dynamic output feedback

Dynamic output feedback controller

$$\text{Controller: } \begin{cases} \dot{w}(t) = Kw(t) + Ly(t) \\ u(t) = Mw(t) + Ny(t) \end{cases} \quad \text{Closed-loop dynamics: } \begin{bmatrix} \dot{x}(t) \\ \dot{w}(t) \end{bmatrix} = \begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$$

Definition Stabilization problem

Given Σ , find K, L, M, N such that $A_{cl} = \begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix}$ satisfies $\sigma(A_{cl}) \subset \mathbb{C}_-$

Lemma Solution to the stabilization problem

Let

- Ω be a stable state observer for Σ
- F solves the stabilization problem by static state feedback
- $\Gamma : \begin{cases} \dot{\xi}(t) = (A - GC + BF)\xi(t) + Gy(t) \\ u(t) = F\xi(t) \end{cases}$

Then Γ solves the stabilization problem by dynamic output feedback.

Theorem

There exists a dynamic output feedback controller Γ stabilizing $\Sigma(A, B, C)$ if and only if the matrix pair (A, B) is stabilizable and the matrix pair (A, C) is detectable.

Algorithm Designing a dynamic output feedback controller for a model

1. Write the model in state-space form
2. If nonlinear:
 - (a) Find an equilibrium point
 - (b) Linearize the system around the equilibrium
3. Check controllability/stabilizability
4. Check observability/detectability
5. Find F such that $\sigma(A + BF) \subset \mathbb{C}_-$
6. Find G such that $\sigma(A - GC) \subset \mathbb{C}_-$
7. Construct Γ

6 Input-output properties

6.1 Impulse response matrix

Unique output solution of a linear system

$$y(t; t_0, x_0, u) = Ce^{A(t-t_0)} + \int_{t_0}^t Ce^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

Theorem

Let $\Sigma(A, B, C, D)$ and $\Sigma(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ be similar.

Then for any input function $u : [0, \infty) \rightarrow \mathbb{R}^m$, $y(t; 0, u) = \bar{y}(t; 0, u)$

Lemma

Define the function $u_\varepsilon : \mathbb{R} \rightarrow \mathbb{R}$ as $u_\varepsilon(t) = \begin{cases} \frac{1}{2\varepsilon} & -\varepsilon \leq t \leq \varepsilon \\ 0 & \text{otherwise} \end{cases}$

Define $y_\varepsilon(t) = \int_{-\varepsilon}^t Ce^{A(t-\tau)} Bu_\varepsilon(\tau) d\tau$. Then $\lim_{\varepsilon \rightarrow 0^+} y_\varepsilon(t) = \begin{cases} Ce^{At} B & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{cases}$

Definition Dirac delta function

A "function" $\delta : \mathbb{R} \rightarrow \mathbb{R}$ with defining properties:

1. $\delta(t) = 0$ for all $t \neq 0$
2. For any continuous $\phi : \mathbb{R} \rightarrow \mathbb{R}$, $\int_{-\infty}^{\infty} \phi(t - \tau) \delta(t) dt = \phi(0)$

Definition Impulse response matrix

The **impulse response matrix** for Σ is $H : \mathbb{R} \rightarrow \mathbb{R}^{p \times m}$ defined as

$$H(t) = \begin{cases} Ce^{At}B + D\delta(t) & t \geq 0 \\ 0 & t < 0 \end{cases}$$

Theorem

Consider Σ with impulse response matrix H . Then

$$y(t; 0, u) = \int_0^t H(t - \tau)u(\tau) d\tau$$

6.2 Transfer functions

Definition Exponentially bounded function

A function $f : [0, \infty) \rightarrow \mathbb{R}$ is **exponentially bounded** if there exist some $M, \alpha \in \mathbb{R}$ such that $|f(t)| \leq M e^{\alpha t}$ for all t .

Definition Laplace transform

For f exponentially bounded, its **Laplace transform** is

$$\mathcal{L}(f)(s) = \int_0^{\infty} f(t) e^{-st} dt \quad \text{for } s \in \mathbb{C} \text{ with } \Re(s) > \alpha$$

Theorem Properties of the Laplace transform

1. $\mathcal{L}(f + g) = \mathcal{L}(f) + \mathcal{L}(g)$
2. $\mathcal{L}(\alpha f) = \alpha \mathcal{L}(f)$
3. if f differentiable and f' exp. bounded, $\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$
4. if $u, h : [0, \infty) \rightarrow \mathbb{R}$ exp. bounded,
then $y(t) = \int_0^t h(t - \tau)u(\tau) d\tau$ is exp. bounded and $\mathcal{L}(y) = \mathcal{L}(h)\mathcal{L}(u)$

Definition Transfer function matrix

The **transfer function** of Σ is $T(s) = C(sI - A)^{-1}B + D$

Relation between Laplace transforms of input and output

$\hat{y}(s) = T(s)\hat{u}(s)$ where $\hat{u}(s) = \mathcal{L}(u)(s)$ and $\hat{y} = \mathcal{L}(y(\cdot; 0, u))(s)$

Theorem

$$T(s) = \mathcal{L}(H)(s)$$

for all $s \in \mathbb{C}$ such that $\Re(s) > \Lambda(A)$, where $\Lambda(A) = \max\{\Re(\lambda) \mid \lambda \in \sigma(A)\}$

Theorem

If $\Sigma(A, B, C, D)$ and $\Sigma(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ are similar, then they have the same transfer function.

6.3 Transfer functions for SISO systems

A **SISO system** has a single input and a single output, i.e. $m = 1, p = 1$

Theorem

Consider the system $\Sigma(A, B, C, D)$ with

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad C = [c_0 \ c_1 \ c_2 \ \cdots \ c_{n-2} \ c_{n-1}]$$

$$\text{Then, } T(s) = \frac{c_{n-1}s^{n-1} + c_{n-2}s^{n-2} + \cdots + c_1s + c_0}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \cdots + a_1s + a_0}$$

Theorem

Consider the SISO system Σ and let (A, B) be controllable. Then, the polynomials

$$p(s) = C \operatorname{adj}(sI - A)B \quad q(s) = \Delta_A(s)$$

are coprime (i.e. they have no common roots) if and only if (A, C) is observable.

6.4 External stability

Transfer functions

Scalar transfer function (SISO): $T(s) = \frac{p(s)}{q(s)} = \frac{p'(s)}{q'(s)} \quad p', q' \text{ coprime}$

Matrix transfer function: $T(s) = \frac{1}{q(s)} P(s)$

Definition Pole

(Scalar case) $\lambda \in \mathbb{C}$ is a **pole** of T if it is a root of q'

(Matrix case) $\lambda \in \mathbb{C}$ is a **pole** of T if it is a pole of at least 1 of its elements

Theorem

1. If $\lambda \in \mathbb{C}$ is a pole of T , then $\lambda \in \sigma(A)$
2. If $\lambda \in \mathbb{C} \setminus \sigma(A)$, (A, B) is controllable and (A, C) is observable, then λ is a pole of T

Definition Internal and external stability

A system $\Sigma(A, B, C, D)$ is

- **internally stable** if $\dot{x}(t) = Ax(t)$ is asymptotically stable
- **externally stable** if there exists $\gamma > 0$ such that, for any bounded input function $u : [0, \infty) \rightarrow \mathbb{R}^m$,

$$\sup_{t \in \mathbb{R}_+} |y(t; 0, u)| \leq \gamma \sup_{t \in \mathbb{R}_+} |u(t)| \quad \text{or} \quad |u(t)| \leq 1 \quad \forall t \in [0, \infty) \implies |y(t; 0, u)| \leq \gamma \quad \forall t \in [0, \infty)$$

Lemma

$\Sigma(A, B, C, D)$ is externally stable $\iff \Sigma(A, B, C, 0)$ is externally stable

Theorem

The following are equivalent:

1. Σ is externally stable
2. $\int_0^\infty \|Ce^{At}B\| dt < \infty$ (recall: $\|M\| = \sup\{\frac{|Mx|}{|x|} \mid x \neq 0\}$)
3. $\lim_{t \rightarrow \infty} Ce^{At}B = 0$
4. all poles of T are in \mathbb{C}_-

Theorem

1. If Σ is internally stable, then it is externally stable.
2. If Σ is externally stable, the matrix pair (A, B) is controllable, and the matrix pair (A, C) is observable, then Σ is internally stable.