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1 Ordinary differential equations

1.1 First-order scalar ODEs

Definition Scalar first-order ODE

A scalar first-order ODE is of the form ẋ(t) = f(t, x(t))
with independent variable t, dependent variable x and f : D ⊂ R2 → R.
A function x : J ⊂ R → R is a solution to the scalar first-order ODE if 3 conditions are satisfied:

1. (t, x(t)) ∈ D for all t ∈ J
2. x is differentiable
3. ẋ(t) = f(t, x(t)) for all t ∈ J

This solution is not unique. To fix a specific solution, we can add the initial value x(t0) = x0

Lemma Solution of a scalar first-order ODE

Equations of the form ẋ = f(t)
The solution of ẋ = f(t) is the antiderivative of f .

With the initial condition x(t0) = x0 we have x(t) = x0 +
´ t
t0
f(t) dt

Equations of the form ẋ = g(x) (Autonomous ODE)
For g(x) ̸= 0, any solution to ẋ(t) = g(x) is of the form H(x) = t+ τ with dH

dx (x) =
1

g(x) , τ ∈ R
Equations of the form ẋ = f(t)g(x) (Separable ODE)
Equations of the form ẋ = f(t)g(x) can be rewritten as 1

g(x) dx = f(t) dt

and then solved by integrating both sides:
´

1
g(x) dx =

´
f(t) dt

1.2 Linear scalar ODEs

Definition Linear scalar ODE

A linear scalar ODE is of the form ẋ(t) = a(t)x(t) + b(t) with a, b : J → R continuous.
It is homogeneous if b(t) = 0 for all t ∈ J and inhomogeneous otherwise.
We can define a linear operator L(x) = ẋ− a(t)x to rewrite the ODE as L(x) = b.

Lemma Solution of a linear scalar ODE

Homogeneous case
The solutions to ẋ(t) = a(t)x(t) are given by x(t) = CeF (t), F (t) =

´
a(t) dt

With the initial condition x(t0) = x0, we have x(t) = x0e
F (t), F (t) =

´ t
t0
a(τ) dτ

Inhomogeneous case
The solutions to ẋ(t) = a(t)x(t) + b(t) are given by x(t) = CeF (t) + eF (t)

´
e−F (t)b(t) dt, F (t) =

´
a(t) dt

With the initial condition x(t0) = x0, we have x(t) = x0e
F (t) + eF (t)

´ t
t0
e−F (t)b(t) dt, F (t) =

´ t
t0
a(τ) dτ

The solutions to the initial value problems are unique.

Theorem

The difference of two solutions of the inhomogeneous case is a solution to the homogeneous case.

1.3 Systems of differential equations

Definition System of differential equations

A system of differential equations is of the form ẋ(t) = f(t, x(t))

where x =


x1

x2

...
xn

 and f(t, x) =


f1(t, x1, x2, . . . , x1)
f2(t, x1, x2, . . . , x2)

...
fn(t, x1, x2, . . . , xn)

 , f : D → R, D ⊂ R× Rn
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Definition Higher-order differential equations

Denote y(k) = dky
dtk

(t). Consider y(k)(t) = f
(
t, y(t), ẏ(t), . . . , y(k−1)(t)

)
.

Introduce the vector x =


x1

x2

...
xn

 =


y
ẏ
...

y(k−1)

 Then ẋ =


x2

...
xn

f(t,x)



2 Linear systems

Definition Linear system (state-space form)

A linear system is a system of the form Σ :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x is the state, u is the input and y is the output.

2.1 Nonlinear systems

Definition Nonlinear system (state-space form)

A nonlinear system is a system of the form Σ :

{
ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t))

where x is the state, u is the input and y is the output.

Definition Equilibrium

Let u(t) = u be constant. Then, x ∈ Rn is an equilibrium for u if f(x, u) = 0

Definition Linearization

The linearization of the nonlinear system Σ is of the form

{
˙̃x(t) = Ax̃(t) +Bũ(t)

ỹ(t) = Cx̃(t) + Cũ(t)

with x̃ = x(t)− x, ũ = u(t)− u, ỹ = y(t)− y, A =
∂f

∂x
(x, u), B =

∂f

∂u
(x, u), C =

∂h

∂x
(x, u), D =

∂h

∂u
(x, u)

where y = h(x, u) and A,B,C,D are (not necessarily square) Jacobian matrices.

3 Solutions of linear systems

3.1 The matrix exponential

Definition Matrix exponential

For A ∈ Rn×n, t ∈ R, we have eAt =

∞∑
k=0

Aktk

k!

Definition Matrix norm

Let A ∈ Fn×n. Then ∥A∥ = sup

{
|Ax|
|x|

∣∣∣∣x ̸= 0

}
= sup{|Ax| | |x| = 1}
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Lemma Properties of the matrix exponential

Let A,B ∈ Cn×n and t, s ∈ R.
1. d

dte
At = AeAt = eAtA

2. eAt is invertible, and (eAt)−1 = e−At

3. If AB = BA, then eAtB = BeAt

4. If AB = BA, then eAteBt = e(A+B)t

5. eAteAs = eA(t+s)

6. (eAt)T = eA
T t

Lemma

Let T ∈ Cn×n be nonsingular and A ∈ Cn×n. Then eTAT−1t = TeAtT−1

Lemma

Let A be diagonalizable. Then A = TΛT−1, where T has the eigenvectors of A as columns,
and Λ is a diagonal matrix containing the eigenvalues of A.

Theorem

Let A ∈ Rn×n. Then,

eA(t−t0)x0 =

n∑
i=1

civie
λi(t−t0)

for some constants c1, c2, . . . , cn ∈ C and (λi, vi) eigenpairs of A, i.e. Avi = λivi

3.2 Jordan canonical form

Definition Spectrum

The spectrum of A ∈ Cm×n, denoted σ(A), is the set of eigenvalues of A.
We denote the characteristic polynomial det(λI −A) by ∆A(λ).

Definition Jordan block

A Jordan block Jk(λ) ∈ Ck×k is equal to λI +N , where N has ones on the upper diagonal. Nk = 0.

Lemma

eJk(λ)t = eλt



1 t t2

2! · · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!

0 0 1 · · · tk−3

(k−3)!

...
...

...
. . .

...
0 0 0 · · · 1


Theorem Jordan canonical form

For any A ∈ Rn×n, there exists a nonsingular T ∈ Cn×n such that A = TJT−1 with

J =


Jk1(λ1)

Jk2
(λ2)

. . .

Jkr
(λr)


with λi ∈ σ(A). Conversely, if λ ∈ σ(A), then λ = λi for some i ∈ {1, 2, . . . , r}
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Definition Multiplicities

For λ ∈ σ(A),
1. its algebraic multiplicity aλ is its multiplicity as a root of ∆A

2. its geometric multiplicity gλ is the dimension of its eigenspace Eλ

where Eλ = {v ∈ Cn | (A− λI)v = 0}

Properties of multiplicities ∑
λ∈σ(A)

aλ = n 1 ≤ gλ ≤ aλ ∀λ ∈ σ(A)

Theorem

A is diagonalizable if and only if aλ = gλ for all λ ∈ σ(A)

Definition Generalized eigenspace

The generalized eigenspace of λ ∈ σ(A) is

Kλ = {v ∈ Cn | (A− λI)pv = 0 for some integer p > 0}

Theorem Properties of the generalized eigenspace

Let A ∈ Cn×n and λ ∈ σ(A).
1. dimKλ = aλ
2. Kλ ∩Kλ′ = {0} for any distinct λ, λ′ ∈ σ(A)
3. Kλ is A-invariant, i.e. v ∈ Kλ =⇒ Av ∈ Kλ

Definition Cycle

Let λ ∈ σ(A), v ∈ Kλ. Let k be the smallest integer such that (A− λI)kv = 0. Then,
{(A− λI)k−1v, (A− λI)k−2v, . . . , v} is called a cycle of generalized eigenvectors.

Theorem

Let λ ∈ σ(A). Then Kλ has a basis consisting of cycles.

Definition Dot diagram

Let λ ∈ σ(A) and
• rλ,1 = n− rank(A− λI) = gλ
• rλ,1 = rank(A− λI)j−1 − rank(A− λI)j

To construct the dot diagram, we put rλ,i dots (left-aligned) in the ith row for all i.

Theorem Properties of the dot diagram

Let λ ∈ σ(A) and consider the dot diagram.
1. # columns = # independent cycles in Kλ = gλ
2. # dots in each column = length of the corresponding cycle
3. # dots = aλ

Algorithm Computation of the Jordan canonical form

If only J needs to be computed, skip steps 2c and 4.
1. Compute λi and aλi

2. For each λi:
(a) compute rank(A− λI)j for integers j > 0, stop when the difference between ranks is 0
(b) construct the dot diagram by definition
(c) compute each cycle by definition (such that the v’s are linearly independent)

3. Use the dot diagram for each λ to form J
(a) The number of Jordan blocks corresponding to λi is the number of columns of its dot diagram.
(b) The size of each Jordan block is the number of dots in its corresponding column.

4. Use the corresponding cycles to form T (the columns of T are the vectors contained in the cycles)
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3.3 Solutions of linear systems

Algorithm Computation of eAt

1. Compute the eigenvalues of A. If they are distinct, also compute the eigenvectors.
2. If A is diagonalizable:

(a) Compute the diagonalization A = TΛT−1

T has the eigenvectors as columns and Λ has the eigenvalues on the diagonal.
(b) Compute eAt using eAt = eTΛT−1t = TeΛtT−1

Λ is a diagonal matrix and therefore eΛt can be computed entry-wise.
3. If A is not diagonalizable:

(a) Compute the Jordan canonical form A = TJT−1

(b) For each Jordan block, compute eJki
(λi)t

(c) Compute eAt using eAt = eTJT−1t = TeJtT−1 = T

e
Jk1

(λ1)t 0
. . .

0 eJkr (λr)t

T−1

Theorem Unique solution of a linear system

Homogeneous case
Consider ẋ(t) = Ax(t), x(t0) = x0 for A ∈ Rn×n.
The unique solution is:

x(t; t0, x0) = eA(t−t0)x0

Inhomogeneous case
Consider ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 for u : J → Rm, A ∈ Rn×n, B ∈ Rn×m.
The unique solution is:

x(t; t0, x0, u) = eA(t−t0)x0 +

ˆ t

t0

eA(t−τ)Bu(τ) dτ

4 Stability, controllability and observability

4.1 Stability

Definition Stability

The system ẋ(t) = Ax(t) is called
1. stable if for all x0 ∈ R, there exists M > 0 such that |x(t : x0)| ≤ M for all t ≥ 0
2. asymptotically stable if for all x0 ∈ R, lim

n→∞
tx(t;x0) = 0

Observations

Let (eAt)ij denote element i, j of eAt

1. |(eAt)ij | ≤ m ∀i, j =⇒ ẋ(t) = Ax(t) is stable
2. lim

n→∞
t(eAt)ij = 0 ∀i, j =⇒ ẋ(t) = Ax(t) is asymptotically stable

3. By the Jordan canonical form, each (eAt)ij is a sum of terms of the from tkeλt

where λ is an eigenvalue of A and k is a nonnegative integer.

Lemma

Consider t 7→ tkeλt with k ≥ 0
1. If ℜ(λ) < 0, then lim

n→∞
ttkeλt = 0 and |tkeλt| ≤ M for all t ≥ 0

2. For any α ∈ R such that ℜ(λ) < α, |tkeλt| ≤ Meαt for all t ≥ 0

Definition

C− = {z ∈ C | ℜ(z) < 0} C− = {z ∈ C | ℜ(z) ≤ 0}
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Theorem

The system ẋ(t) = Ax(t) is
1. stable if and only if σ(A) ⊂ C− and every λ with ℜ(λ) = 0 is semisimple, i.e. α(λ) = γ(λ)
2. asymptotically stable if and only if σ(A) ⊂ C−

Definition Stability of polynomials

A polynomial p(s) = ans
n + an−1s

n−1 + . . .+ a1s+ a0 with ai ∈ R, an ̸= 0 is called stable
if all roots have negative real parts.

Theorem

The system ẋ(t) = Ax(t) is asymptotically stable ⇐⇒ the characteristic polynomial of A is stable

Theorem Routh-Hurwitz condition

The polynomial p(s) is stable if and only if:
1. an−1 ̸= 0 and has the same sign as an.
2. the polynomial q(s) = an−1p(s)− an(an−1s

n + an−3s
n−2 + an−5s

n−4 + . . .) is stable

Lemma

Let p(s) with ai ∈ R be stable. Then all ai are nonzero and have the same sign.

Theorem Kharitonov’s theorem

Let a−i , a
+
i ∈ R, i ∈ {0, 1, . . . , n} satisfy a−i ≤ a+i .

Define P(s) =
{
ans

n + an−1s
n−1 + . . .+ a1s+ a0 | a−i ≤ a1 ≤ a+i for all i ∈ {0, 1, . . . , n}

}
P is stable (i.e. all polynomials in P are stable) if and only if the following 4 polynomials are all stable:

p++(s) = a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + a+4 s
4 + a+5 s

5 + a−6 s
6 + . . .

p+−(s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + a+4 s
4 + a−5 s

5 + a−6 s
6 + . . .

p−+(s) = a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + a−4 s
4 + a+5 −5 +a+6 s

6 + . . .

p−−(s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + a−4 s
4 + a−5 s

5 + a+6 s
6 + . . .

4.2 Controllability

Consider the linear system Σ : ẋ(t) = Ax(t) +Bu(t)

Definition Reachability

xf ∈ Rn is reachable at time T > 0
if there exists an input function u : [0, T ] → Rm such that x(T ; 0, u) = xf

Definition Reachable subspace

WT = {xf ∈ Rn | xf is reachable at T}

Definition Reachablility of a system

Σ is reachable at time T > 0 if WT = Rn

Theorem

Let v ∈ R and T > 0. The following statements are equivalent:
1. vTx = 0 for all x ∈ WT

2. vT eAtB = 0 for all 0 ≤ t ≤ T
3. vTAkB = 0 for all k ∈ {0, 1, 2, . . .}
4. vT

[
B AB A2B · · · An−1B

]
= 0

Theorem

WT is independent of T for T > 0 and WT = im
[
B AB A2B · · · An−1B

]
7



Definition Controllability

Σ is controllable at T > 0 if for any x0, xf ∈ Rn, there exists u : [0, T ] → Rm s.t. x(T ;x0, u) = xf

Theorem

Σ is controllable at T > 0 if and only if Σ is reachable at T > 0

Theorem

The following are equivalent:
1. ∃T > 0 s.t. Σ is controllable at T
2. Σ is controllable at T for all T > 0
3. W = Rn

4. rank
[
B AB A2B · · · An−1B

]
= n

4.3 Observability

Consider the linear system Σ : ẋ(t) = Ax(t),y = Cx(t)

Definition Indistinguishable initial conditions

x0, x
′
0 ∈ Rn are indistinguishable on [0, T ] if y(t;x0) = y(t;xi

0) for all t ∈ [0, T ]

Definition Unobservable subspace

NT = {x ∈ Rn | x and 0 are indistinguishable on [0, T ]}

Theorem

Let T > 0. The following are equivalent:
1. x ∈ NT

2. CeAtx = 0 for all t ∈ [0, T ]
3. CAkx = 0 for all k ∈ {0, 1, 2, . . .}

4.


C
CA
...

CAn−1

x = 0

Theorem

NT is independent of T for T > 0 and NT = ker


C
CA
...

CAn−1


Definition Observability

Σ is observable on [0, T ] is x0, x
′
0 ∈ Rn are indistinguishable on [0, T ] only if x0 = x′

0

Theorem

The following are equivalent:
1. ∃T > 0 s.t. Σ is observable on [0, T ]
2. Σ is observable on [0, T ] for all T > 0
3. N = {0}

4. rank


C
CA
...

CAn−1

 = n
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4.4 Similarity

Definition Similarity

Σ(A,B,C,D) and Σ(A,B,C,D) are similar if there exists a nonsingular T such that

A = TAT−1 B = TB C = CT−1 D = D

Theorem

Let Σ(A,B) and Σ(A,B) be similar. Let Σ(A,C) and Σ(A,C) be similar. Then,

Σ(A,B) is controllable ⇐⇒ Σ(A,B) is controllable

Σ(A,C) is observable ⇐⇒ Σ(A,C) is observable

Definition A-invariance

Let A ∈ Rn×n and let v ⊂ Rn be a subspace.
Then, V if A-invariant if x ∈ V =⇒ Ax ∈ V (notation: AV ⊂ V )

4.5 Canonical forms

Theorem

W is the smallest A-invariant subspace containing the image of B.
(smallest means that W is a subset of any other subspace satisfying the condition.)

Theorem Canonical form for uncontrollable systems

Consider Σ(A,B) and let k = dimW < n. Then there exists a nonsingular T ∈ Rn×n such that

TAT−1 =

[
A11 A12

0 A22

]
TB =

[
B1

0

]
with A11 ∈ Rk×k, B1 ∈ Rk×m and Σ(A11, B1) controllable.

Theorem Canonical form for unobservable systems

Consider Σ(A,C) and let k = dimN < n. Then there exists a nonsingular T ∈ Rn×n such that

TAT−1 =

[
A11 A12

0 A22

]
CT−1 =

[
B1

0

]
with A11 ∈ Rk×k, C1 ∈ Rp×k and Σ(A11, C1) observable.

Theorem Controllability canonical form

Let Σ(A,B) with u(t) ∈ R, x(t) ∈ Rn×n be controllable.
Then, there exists a nonsingular T ∈ Rn×n such that

TAT−1 =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . .

. . .
...

...
...

...
. . . 1 0

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


TB =



0
0
...
0
0
1


where ai ∈ R and ∆A(s) = sn + aa−1s

n−1 + . . .+ a1s+ a0
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Theorem Observability canonical form

Let Σ(A,C) with y(t) ∈ R, x(t) ∈ Rn×n be controllable.
Then, there exists a nonsingular T ∈ Rn×n such that

TAT−1 =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1

0 1 0
. . . 0 −a2

...
...

. . .
. . .

...
...

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1


CT−1 =

[
0 0 · · · 0 0 1

]

where ai ∈ R and ∆A(s) = sn + an−1s
n−1 + . . .+ a1s+ a0

Algorithm Computation of the controllability canonical form

1. Verify controllability
2. Compute the characteristic polynomial of A
3. Compute T using T−1 =

[
q1 q2 · · · qn

]
where qn = B, qn−1 = AB + an−1B, qn−2 = A2B + an−1AB + an−2B, . . .
and ∆A(s) = sn + an−1s

n−1 + . . .+ a1s+ a0

4.6 Controllable and observable eigenvalues

Definition Controllable and observable eigenvalues

λ ∈ σ(A) is (A,B) controllable if rank
[
A− λI B

]
= n

λ ∈ σ(A) is (A,C) observable if rank

[
A− λI

C

]
= n

Theorem Hautus test

Σ(A,B) is controllable if and only if rank
[
A− λI B

]
= n for all λ ∈ σ(A).

Σ(A,B) is observable if and only if rank

[
A− λI

C

]
= n for all λ ∈ σ(A).

5 Stabilization

5.1 Stabilization by static state feedback

Definition Closed-loop system

Let u(t) = Fx(t) with F ∈ Rm×n. Then Σ(A,B) : ẋ(t) = (A+BF )x(t) is a closed-loop system.

Theorem Pole placement theorem

The following are equivalent:
1. Σ(A,B) is controllable
2. For any monic polynomial p of degree n, there exists F ∈ Rm×n such that ∆A+BF (s) = p(s)

Algorithm Computation of the static state feedback controller given σ(A+BF )

1. Verify controllability
2. Compute the characteristic polynomial of A
3. Compute T (controllability canonical form)
4. Find the characteristic polynomial p that corresponds to σ(A+BF )
5. Compute F = FT−1 =

[
f0 f1 · · · fn−2 fn−1

]
where fi = ai − pi,

pi are the coefficients of p and ai are the coefficients of ∆A

6. Transform F to the original coordinates (solve F = FT−1 for F )
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Definition Stabilizability

Σ is stabilizable if there exists F ∈ Rm×n such that σ(A+BF ) ⊂ C−

Theorem

Σ(A,B) is stabilizable if and only if every λ ∈ σ(A) satisfying λ /∈ C− is (A,B)-controllable.

Theorem Hautus test for stabilizability

Σ(A,B) is stabilizable if and only if rank
[
A− λI B

]
= n for all λ ∈ σ(A) such that ℜ(λ) ≥ 0

5.2 State observers

Definition State observer

Let Ω be a linear system of the form

{
ẇ(t) = Pw(t) +Qu(t) +Ry(t)

ξ(t) = Sw(t)

with w(t) ∈ Rnw , ξ ∈ Rn and e(t) = ξ(t)− x(t).
Ω is a state observer if for any pair of initial conditions x0, w0 such that e(0) = Sw0 − x0 = 0 and for
any input function u(t), e(t) = 0 for all t ≥ 0.

Definition Stable state observer

A state observer Ω is stable if for any pair of initial conditions and any input function u(t), lim
n→∞

te(t) = 0

Theorem

Ω is a state observer if and only if SQ = B and SP = AS − SRCS.

Theorem General form of a state observer

The general form of a state observer for Σ is ξ̇(t) = (A−GC)ξ(t) +Bu(t) +Gy(t).
The estimation error satisfies ė(t) = (A−GC)e(t).
The state observer is stable if and only if σ(A−GC) ∈ C−.

Definition Detectability

Σ is detectable if there exists G ∈ Rn×p such that σ(A−GC) ⊂ C−

Lemma

(A,C) is detectable ⇐⇒ (AT , CT ) is stabilizable

Theorem Hautus test for detectability

Σ(A,B) is detectable if and only if rank

[
A− λI

C

]
= n for all λ ∈ σ(A) such that ℜ(λ) ≥ 0

Corollary

Consider Σ. The following are equivalent:
1. There exists a stable state observer for Σ
2. Σ is detectable
3. Every λ ∈ σ(A) such that λ /∈ C− is (A,C) observable
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5.3 Stabilization by dynamic output feedback

Dynamic output feedback controller

Controller:

{
ẇ(t) = Kw(t) + Ly(t)

u(t) = Mw(t) +Ny(t)
Closed-loop dynamics:

[
ẋ(t)
ẇ(t)

]
=

[
A+BNC BM

LC K

] [
x(t)
w(t)

]

Definition Stabilization problem

Given Σ, find K,L,M,N such that Acl =

[
A+BNC BM

LC K

]
satisfies σ(Acl) ⊂ C−

Lemma Solution to the stabilization problem

Let
• Ω be a stable state observer for Σ
• F solves the stabilization problem by static state feedback

• Γ :

{
ξ̇(t) = (A−GC +BF )ξ(t) +Gy(t)

u(t) = Fξ(t)

Then Γ solves the stabilization problem by dynamic output feedback.

Theorem

There exists a dynamic output feedback controller Γ stabilizing Σ(A,B,C) if and only if
the matrix pair (A,B) is stabilizable and the matrix pair (A,C) is detectable.

Algorithm Designing a dynamic output feedback controller for a model

1. Write the model in state-space form
2. If nonlinear:

(a) Find an equilibrium point
(b) Linearize the system around the equilibrium

3. Check controllability/stabilizability
4. Check observability/detectability
5. Find F such that σ(A+BF ) ⊂ C−
6. Find G such that σ(A−GC) ⊂ C−
7. Construct Γ

6 Input-output properties

6.1 Impulse response matrix

Unique output solution of a linear system

y(t; t0, x0, u) = CeA(t−t0) +

ˆ t

t0

CeA(t−τ)Bu(τ) dτ +Du(t)

Theorem

Let Σ(A,B,C,D) and Σ(A,B,C,D) be similar.
Then for any input function u : [0,∞) → Rm, y(t; 0, u) = y(t; 0, u)

Lemma

Define the function uε : R → R as uε(t) =

{
1
2ε −ε ≤ t ≤ ε

0 otherwise

Define yε(t) =

ˆ t

−ε

CeA(t−τ)Buε(τ) dτ . Then lim
ε→0+

yε(t) =

{
CeAtB if t > 0

0 if t < 0
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Definition Dirac delta function

A ”function” δ : R → R with defining properties:
1. δ(t) = 0 for all t ̸= 0

2. For any continuous ϕ : R → R,
ˆ ∞

−∞
ϕ(t− τ)δ(t) dt = ϕ(t)

Definition Impulse response matrix

The impulse response matrix for Σ is H : R → Rp×m defined as

H(t) =

{
CeAtB +Dδ(t) t ≥ 0

0 t < 0

Theorem

Consider Σ with impulse response matrix H. Then

y(t; 0, u) =

ˆ t

0

H(t− τ)u(τ) dτ

6.2 Transfer functions

Definition Exponentially bounded function

A function f : [0,∞) → R is exponentially bounded if there exist some M,α ∈ R
such that |f(t)| ≤ Meαt for all t.

Definition Laplace transform

For f exponentially bounded, its Laplace transform is

L(f)(s) =
ˆ ∞

0

f(t)e−st dt for s ∈ C with ℜ(s) > α

Theorem Properties of the Laplace transform

1. L(f + g) = L(f) + L(g)
2. L(αf) = αL(f)
3. if f differentiable and f ′ exp. bounded, L(f ′) = sL(f)− f(0)
4. if u, h : [0,∞) → R exp. bounded,

then y(t) =

ˆ t

0

j(t− τ)u(t) dτ is exp. bounded and L(y) = L(h)L(u)

Definition Transfer function matrix

The transfer function of Σ is T (s) = C(sI −A)−1B +D

Relation between Laplace transforms of input and output

ŷ(s) = T (s)û(s) where û(s) = L(u)(s) and ŷ = L(y( · ; 0, u))(s)

Theorem

T (s) = L(H)(s)

for all s ∈ C such that ℜ(s) > Λ(A), where Λ(A) = max{ℜ(λ) | λ ∈ σ(A)}

Theorem

If Σ(A,B,C,D) and Σ(A,B,C,D) are similar, then they have the same transfer function.
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6.3 Transfer functions for SISO systems

A SISO system has a single input and a single output, i.e. m = 1, p = 1

Theorem

Consider the system Σ(A,B,C,D) with

A =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . .

. . .
...

...
...

...
. . . 1 0

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


B =



0
0
...
0
0
1


C =

[
c0 c1 c2 . . . cn−2 cn−1

]

Then, T (s) =
cn−1s

n−1 + cn−2s
n−2 + . . .+ c1s+ c0

sn + an−1sn−1 + an−2sn−2 + . . .+ a1s+ a0

Theorem

Consider the SISO system Σ and let (A,B) be controllable. Then, the polynomials

p(s) = C adj(sI −A)B q(s) = ∆A(s)

are coprime (i.e. they have no common roots) if and only if (A,C) is observable.

6.4 External stability

Transfer functions

Scalar transfer function (SISO): T (s) =
p(s)

q(s)
=

p′(s)

q′(s)
p′, q′ coprime

Matrix transfer function: T (s) =
1

q(s)
P (s)

Definition Pole

(Scalar case) λ ∈ C is a pole of T if is a root of q′

(Matrix case) λ ∈ C is a pole of T if it is a pole of at least 1 of its elements

Theorem

1. If λ ∈ C is a pole of T , then λ ∈ σ(A)
2. If λ ∈ C ∈ σ(A), (A,B) is controllable and (A,C) is observable, then λ is a pole of T

Definition Internal and external stability

A system Σ(A,B,C,D) is
• internally stable if ẋ(t) = Ax(t) is asymptotically stable
• externally stable if there exists γ > 0 such that, for any bounded input function u : [0,∞) → Rm,

sup
t∈R+

|y(t; 0, u)| ≤ γ sup
t∈R+

|u(t)| or |u(t)| ≤ 1 ∀t ∈ [0,∞) =⇒ |y(t; 0, u)| ≤ γ ∀t ∈ [0,∞)

Lemma

Σ(A,B,C,D) is externally stable ⇐⇒ Σ(A,B,C, 0) is externally stable
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Theorem

The following are equivalent:
1. Σ is externally stable

2.

ˆ ∞

0

∥CeAtB∥dt < ∞ (recall: ∥M∥ = sup{ |Mx|
|x| | x ̸= 0})

3. lim
t→∞

CeAtB = 0

4. all poles of T are in C−

Theorem

1. If Σ is internally stable, then it is externally stable.
2. If Σ is externally stable, the matrix pair (A,B) is controllable, and the matrix pair (A,C) is

observable, then Σ is internally stable.
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