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1 Ordinary differential equations

1.1 First-order scalar ODEs
Definition Scalar first-order ODE |

A scalar first-order ODE is of the form &(t) = f(t, x(t))

with independent variable ¢, dependent variable  and f : D C R? — R.

A function z : J C R — R is a solution to the scalar first-order ODE if 3 conditions are satisfied:
1. (t,x(t)) € D forallt € J
2. z is differentiable
3. &(t) = f(t,z(t)) for all t € J

This solution is not unique. To fix a specific solution, we can add the initial value x(ty) = x¢

Lemma Solution of a scalar first-order ODE |

Equations of the form & = f(t)

The solution of & = f(t) is the antiderivative of f.

With the initial condition z(ty) = xo we have z(t) = z¢ + ftto f(t)dt

Equations of the form & = g(«) (Autonomous ODE)

For g(z) # 0, any solution to @(t) = g(z) is of the form H(z) =t + 7 with 42 (z) = ﬁn’ eR
Equations of the form & = f(t)g(x) (Separable ODE)

Equations of the form & = f(t)g(z) can be rewritten as ﬁ dx = f(t)dt

and then solved by integrating both sides: [ ﬁ dx = [ f(¢)dt

1.2 Linear scalar ODEs
Definition Linear scalar ODE |

A linear scalar ODE is of the form &(t) = a(t)z(t) + b(t) with a,b: J — R continuous.
It is homogeneous if b(t) = 0 for all ¢ € J and inhomogeneous otherwise.
We can define a linear operator L(z) = & — a(t)z to rewrite the ODE as L(x) = b.

Lemma Solution of a linear scalar ODE |

Homogeneous case

The solutions to i(t) = a(t)z(t) are given by z(t) = Cef®  F(t) = [a(t)dt

With the initial condition x(to) = o, we have z(t) = xoeF(t) F( = f a(t)dr

Inhomogeneous case

The solutions to i (t) = a(t)z(t) + b(t) are given by x(t) = Cel’® + F'®) [e=F®p(¢t) dt, F( ) = f ( )dt
With the initial condition z(ty) = xo, we have x(t) = zgef'® + '®) ftto e~ FOp(t)dt, F(t ft

The solutions to the initial value problems are unique.

Theorem |

The difference of two solutions of the inhomogeneous case is a solution to the homogeneous case.

1.3 Systems of differential equations

Definition System of differential equations |

A system of differential equations is of the form @(t) = f (¢, z(t))

x1 filt,x1,22,...,21)
T2 fa(t,x1,22,...,22)

where z = | . | and f(t,2) = . ,f:D—=R, DCRXxR"
Tn fn(taxlax%"-axn)




Definition Higher-order differential equations |

Denote y*) = %(t). Consider y®(¢) = f (t,y(t),9(t),...,y* V().

1 Yy X9
T2 )
Introduce the vector x = | . | = . Then & =
. . T
Tn y=1) ft,x)

2 Linear systems

Definition Linear system (state-space form)

#(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)
where x is the state, u is the input and y is the output.

A linear system is a system of the form X :

2.1 Nonlinear systems

Definition Nonlinear system (state-space form)

@(t) = f((t), u(t))

y(t) = h(z(t), u(t))
where x is the state, u is the input and y is the output.

A nonlinear system is a system of the form > : {

Definition Equilibrium |

Let u(t) = @ be constant. Then, T € R" is an equilibrium for @ if f(Z,u) =0

Definition Linearization |

The linearization of the nonlinear system ¥ is of the form

e m e 0f o
with Z =z(t) — 7, u = u(t) —u, y = y(t) y,Afax(x,u),Bfa

where § = h(Z,u) and A, B,C, D are (not necessarily square) Jacobian matrices.

3 Solutions of linear systems

3.1 The matrix exponential

Definition Matriz exponential |
>N Aktk

For A € R™™ t € R, we have et = o

k=0
Definition Matriz norm |

|Az|

Let A € F"*™. Then ||A|| = sup Tl x #0p =sup{|Az| | |z| = 1}

x




Lemma Properties of the matriz exponential

Let A,B € C"™™ and t,s € R.

1. Sedt = AeAt = A4
et is invertible, and
If AB = BA, then e**B = Be?

If AB = BA, then eAteBt = ¢(A+B)t
eAtpeAs — eA(t+s)

(eAt)T — ATH

(eA)~1 = e~ At

£ = 00

Lemma |

Let T € C™*" be nonsingular and A € C"*". Then eTAT 't = TeAtT-1

Lemma |

Let A be diagonalizable. Then A = TAT !, where T has the eigenvectors of A as columns,
and A is a diagonal matrix containing the eigenvalues of A.

Theorem |

Let A € R™*™, Then,

n
eA(t_tO)xo — E civie)\i(t—to)
=1

for some constants c¢i, ca, ..., ¢, € C and (\;,v;) eigenpairs of A, i.e. Av; = \jv;

3.2 Jordan canonical form

Definition Spectrum |

The spectrum of A € C™*" denoted o(A), is the set of eigenvalues of A.
We denote the characteristic polynomial det(AI — A) by A4(X).

Definition Jordan blockl

A Jordan block Ji()\) € C*** is equal to Al + N, where N has ones on the upper diagonal. N* = 0.

Lemma |

2 k—1 T
t 5 =
t ¢
(k—}g)!
N0 0 1 fy
0 0 0 1

Theorem Jordan canonical forml

For any A € R"*", there exists a nonsingular 7' € C™"*" such that A = TJT~! with
‘]kl (/\1)
Jk2 (>‘2)
Ik, (Ar)

with \; € o(A). Conversely, if A € o(A), then A = \; for some ¢ € {1,2,...,7}




Definition Multiplicities |

For A € o(A),
1. its algebraic multiplicity a) is its multiplicity as a root of A4
2. its geometric multiplicity g, is the dimension of its eigenspace E)
where Ey ={ve C" | (A— A)v =0}

Properties of multiplicities |

Z ax=n 1<gr<ay, YAeo(A)
Ao (A)

Theorem |

A is diagonalizable if and only if ay = g, for all A € o(A)

Definition Generalized eigenspace |

The generalized eigenspace of A € g(A) is

Ky ={veC"|(A— X)Pv =0 for some integer p > 0}

Theorem Properties of the generalized eigenspace |

Let A€ C"™™ and A € o(A).
1. dim K = ay
2. KxN Ky = {0} for any distinct A\, \' € o(A)
3. K, is A-invariant, i.e. v € K, = Av € K),

Definition Cycle |

Let A € 0(A),v € K. Let k be the smallest integer such that (A — AI)*v = 0. Then,
{(A = XD)F=1o, (A — NI)k=2y,... v} is called a cycle of generalized eigenvectors.

Theorem |

Let A € 0(A). Then K has a basis consisting of cycles.

Definition Dot dz’agmml

Let A € 0(A) and
o 7y 1 =n —rank(A — A) = g
o 751 = rank(A — AI)771 — rank(A — )
To construct the dot diagram, we put 7y ; dots (left-aligned) in the ith row for all .

Theorem Properties of the dot diagram |

Let A € 0(A) and consider the dot diagram.
1. # columns = # independent cycles in Ky = g
2. # dots in each column = length of the corresponding cycle
3. # dots = ay

Algorithm Computation of the Jordan canonical form |

If only J needs to be computed, skip steps 2c and 4.
1. Compute A; and ay,
2. For each \;:
(a) compute rank(A — AI)7 for integers j > 0, stop when the difference between ranks is 0
(b) construct the dot diagram by definition
(¢) compute each cycle by definition (such that the v’s are linearly independent)
3. Use the dot diagram for each A to form J
(a) The number of Jordan blocks corresponding to \; is the number of columns of its dot diagram.
(b) The size of each Jordan block is the number of dots in its corresponding column.
4. Use the corresponding cycles to form T' (the columns of T" are the vectors contained in the cycles)




3.3 Solutions of linear systems

Algorithm Computation of et

1. Compute the eigenvalues of A. If they are distinct, also compute the eigenvectors.
2. If A is diagonalizable:
(a) Compute the diagonalization A = TAT~!
T has the eigenvectors as columns and A has the eigenvalues on the diagonal.
(b) Compute eA! using eAt = ¢TAT ™'t = TeAtT~1
A is a diagonal matrix and therefore e can be computed entry-wise.
3. If A is not diagonalizable:
(a) Compute the Jordan canonical form A =T JT~1
(b) For each Jordan block, compute e”k: (Ai)?
ek (A1)t 0
(¢) Compute et using eAt = ¢T/T 't = Te/tT—1 =T Tt
0 eJkr (Ar)t

Theorem Unique solution of a linear system |

Homogeneous case

Consider &(t) = Az(t), z(tg) = zo for A € R™*™.
The unique solution is:
x(t;t0, x0) = eAlt=to) g0

Inhomogeneous case
Consider &(t) = Az(t) + Bu(t), z(tg) = zo for u: J - R™ A € R"*" B € R"*™.
The unique solution is:

t
z(t; o, Tg, u) = A0z +/ eA=7) Bu(r) dr

to

4 Stability, controllability and observability

4.1 Stability

Definition Stability |

The system @(t) = Az(t) is called
1. stable if for all o € R, there exists M > 0 such that |z(t: z¢)] < M for all ¢ >0
2. asymptotically stable if for all zp € R, lim tx(¢;29) =0
n— oo

Observations |

Let (et);; denote element i, j of e
L. |(e?)y| <m Vi,j = @(t) = Az(t) is stable
2. lim t(e?t);; =0 Vi,j = @(t) = Ax(t) is asymptotically stable
n—oo
3. By the Jordan canonical form, each (e4t);; is a sum of terms of the from t*e!
where A is an eigenvalue of A and k is a nonnegative integer.

Lemma |

Consider t — ke with k> 0
1. If R(A\) < 0, then lim tt*er = 0 and [tFer| < M for all t > 0
n—oQ

2. For any a € R such that R()\) < a, [tFer| < Me™ for all t > 0

Definition |

C_o={zeC|R(=) <0} C_={zeC|R(z) <0}




Theorem |

The system &(t) = Az(t) is -
1. stable if and only if 0(A) C C_ and every A with (\) = 0 is semisimple, i.e. a(A) =y())
2. asymptotically stable if and only if o(A) C C_

Definition Stability of polynomials |

A polynomial p(s) = a,s" + a,_18" "' + ...+ a1s + ag with a; € R,a, # 0 is called stable
if all roots have negative real parts.

Theorem |

The system @(t) = Az(t) is asymptotically stable <= the characteristic polynomial of A is stable

Theorem Routh-Hurwitz conditionl

The polynomial p(s) is stable if and only if:
1. an—1 # 0 and has the same sign as a,,.
2. the polynomial q(s) = an_19(8) — an(an_18" + an_35""2 + a,_558""*+...) is stable

Lemma |

Let p(s) with a; € R be stable. Then all a; are nonzero and have the same sign.

Theorem Kharitonov’s theoreml

Let a; ,a] €R,i€{0,1,...,n} satisfy a; <a.
Define P(s) = {ans" +ap_18" P+ tas+aola; <a < aj' for all i € {0,1,... ,n}}
P is stable (i.e. all polynomials in P are stable) if and only if the following 4 polynomials are all stable:

pTT(s)=af +afs+ays®+azs®+afst+als®+azst+...
pt=(8)=af +ays+a;s®+afs® +afst+ags®+azs+...
p T (s)=ay +afs+afs® +azs®+ayst+ad —° +ads®+...
p (s)=ay +tays+afs®+afs® tayst+ags®+afst+. ..

4.2 Controllability
Consider the linear system ¥ : &(t) = Az(t) + Bu(t)

Definition Reachability |

xzy € R™ is reachable at time T' > 0
if there exists an input function u : [0, 7] — R™ such that z(T;0,u) = =

Definition Reachable subspace |

Wrp = {x; € R" | xs is reachable at T}

Definition Reachablility of a system |

Y is reachable at time T > 0 if W = R"”

Theorem |

Let v € R and T' > 0. The following statements are equivalent:
1. vTz =0 for all z € Wy
2. vTeMB =0forall0<t<T
3. vI'A*B =0 for all k € {0,1,2,...}
4.

vI'[B AB A’B --- A"7'B]| =0
Theorem |
Wr is independent of T for T" > 0 and Wy = im [B AB A’B ... A"_lB]




Definition Controllability

¥ is controllable at 7' > 0 if for any xo,xzy € R", there exists u: [0,T] = R™ s.t. a(T;zo,u) =z

Theorem |

Y is controllable at T > 0 if and only if ¥ is reachable at T" > 0

Theorem |

The following are equivalent:
1. 3T >0 s.t. X is controllable at T
2. Y is controllable at T for all T > 0
3. W=R"
4. rank [B AB A?B --- A"!'B]=n

4.3 Observability
Consider the linear system 3 : &(t) = Az(t),y = Cx(t)

Definition Indistinguishable initial conditions |

To,z € R" are indistinguishable on [0, T if y(¢; z) = y(t; xf) for all t € [0, 7]

Definition Unobservable subspace |

Nr ={z € R" | z and 0 are indistinguishable on [0, 77}

Theorem |

Let T' > 0. The following are equivalent:
1. x € Np
2. Cety =0 for all t € [0, 7]
3. CA*z =0 forall k € {0,1,2,...}
C

CA
4. . z=0

cAr1

Theorem |

C

CA
N7 is independent of T for T" > 0 and Ny = ker

cAr-1

Definition Observability |

Y is observable on [0,T] is zg, xz, € R™ are indistinguishable on [0, 7] only if z¢o = x|,

Theorem |

The following are equivalent:
1. 3T >0 s.t. X is observable on [0, 7]
2. X is observable on [0,7] for all T > 0

3. N = {0}
C
CcA
4. rank . =n
CAnfl




4.4 Similarity

Definition Similarity |

%(A, B,C, D) and X(4, B,C, D) are similar if there exists a nonsingular T' such that

=Cr ! D=D

Ql

A=TAT! B=TB

Theorem |

Let %(A, B) and X(4, B) be similar. Let 3(A, C) and (A, C) be similar. Then,
Y(A, B) is controllable <= X(A, B) is controllable

(A, C) is observable <= (A, C) is observable

Definition A-invariance |

Let A € R™*™ and let v C R™ be a subspace.
Then, V if A-invariant if t € V = Az € V (notation: AV C V)

4.5 Canonical forms

Theorem |

W is the smallest A-invariant subspace containing the image of B.
(smallest means that W is a subset of any other subspace satisfying the condition.)

Theorem Canonical form for uncontrollable systems |

Consider X(A, B) and let kK = dim W < n. Then there exists a nonsingular 7" € R™*™ such that

~1_ [Ann Ap _ | B
TAT = { 0 Aoy TB = 0

with Ay, € R¥** B € RFX™ and ©(A;1, B;) controllable.

Theorem Canonical form for unobservable systems |

Consider (A4, C) and let k = dim N < n. Then there exists a nonsingular 7' € R™*" such that

—1_ A A -1 _ | B
TAT _{0 A CT— = 0

with A;; € R¥** O € RPXF and $(A;;,C;) observable.

Theorem Controllability canonical forml

Let (A, B) with u(t) € R, z(t) € R"*™ be controllable.
Then, there exists a nonsingular 7' € R™*"™ such that

o 1 0 - 0 0 0]
o 0 1 - 0 0 0
TAT ! = b v Y TB= |-
: : . c 1 0 0
0 0 0 - 0 1 0
L—@ —ai —az2 -*° —AaAp_2 —0anp_1 | -1-

where a; € R and A4(s) = s" +aq_18"" 1+ ... +a1s + ap




Theorem Observability canonical forml

Let (A, C) with y(t) € R, z(t) € R™*™ be controllable.
Then, there exists a nonsingular 7' € R™*™ such that

0 0 -+ 0 —ap

10 0 - 0 -
Tar-t=|( 1 0 0 —a CT'=10 0

00 -+ 1 0 —apo

00 -+ 0 1 —ap1]

where a; € R and A4(s) = s" + ap_18" "' +...+ a5+ ag

0 0 1]

Algorithm Computation of the controllability canonical forml

1. Verify controllability

2. Compute the characteristic polynomial of A

3. Compute Tusing T' = [¢1 ¢z -+ ¢n]
where ¢, = B, qn—1 = AB+an_1B, qn2= A’B + an—1AB + a,—2B,
and Aa(s) = 8" +an_18" 1 +...+a1s+ap

4.6 Controllable and observable eigenvalues

Definition Controllable and observable eigenvaluesl

A € o(A) is (A, B) controllable if rank [A — X B] =n

A €o(A) is (A, C) observable if rank [A _C’)\I] =n

Theorem Hautus testl

%(4, B) is controllable if and only if rank [A — X B] = n for all A € o(A).

(A, B) is observable if and only if rank [A CAI] =n for all A € o(A).

5 Stabilization

5.1 Stabilization by static state feedback

Definition Closed-loop systeml

Let u(t) = Fa(t) with F € R™*". Then (A, B) : @(t) = (A + BF)x(t) is a closed-loop system.

Theorem Pole placement theorem |

The following are equivalent:
1. (A4, B) is controllable

2. For any monic polynomial p of degree n, there exists F' € R™*™ such that Aa;pr(s) = p(s)

Algorithm Computation of the static state feedback controller given o(A + BF)

1. Verify controllability

Compute the characteristic polynomial of A

Compute T (controllability canonical form)

Find the characteristic polynomial p that corresponds to o(A + BF)
ComputeF:FTil = [fO fl fn—2 fn—l] where fi:ai_pi7
p; are the coefficients of p and a; are the coefficients of A 4

6. Transform F' to the original coordinates (solve F' = FT~! for F)

O e ot

10




Definition Stabilizability

¥ is stabilizable if there exists F' € R™*™ such that (A + BF) C C_

Theorem |

(A, B) is stabilizable if and only if every A € o(A) satisfying A ¢ C_ is (A, B)-controllable.

Theorem Hautus test for stabilizabilityl

%(A, B) is stabilizable if and only if rank [A — A B] = n for all A € o(A) such that R(X) > 0

5.2 State observers

Definition State observerl

w(t) = Pw(t) + Qu(t) + Ry(t)

£(t) = Sw(t)

with w(t) € R™, & € R™ and e(t) = £(¢) — «(¢).

Q is a state observer if for any pair of initial conditions xg,wg such that e(0) = Swg — xo = 0 and for
any input function u(t), e(t) =0 for all ¢ > 0.

Let © be a linear system of the form

Definition Stable state observer |

A state observer (2 is stable if for any pair of initial conditions and any input function u(t), lim te(t) =0

n— o0
Theorem |

Q is a state observer if and only if SQ = B and SP = AS — SRCS.

Theorem General form of a state observerl

The general form of a state observer for ¥ is £(t) = (A — GO)E(t) + Bu(t) + Gy(t).
The estimation error satisfies é(t) = (A — GC)e(t).
The state observer is stable if and only if (4 — GC) € C_.

Definition Detectability |

¥ is detectable if there exists G € R™*? such that c(A — GC) C C_

Lemma |

(A, C) is detectable <= (AT, C7) is stabilizable

Theorem Hautus test for detectabilityl

A—- Al

Y (A, B) is detectable if and only if rank [ c

} =n for all A € g(A) such that () >0

Corollary |

Consider . The following are equivalent:
1. There exists a stable state observer for X
2. Y is detectable
3. Every A\ € o(A) such that A ¢ C_ is (A, C) observable

11



5.3 Stabilization by dynamic output feedback

Dynamic output feedback contmllerl

w(t) = Kw(t) + Ly(t)

Controller: {u(t) () 4 N a‘c(t)} _ [A+BNC BM} {x(t)]

Closed-loop dynamics: LU ) LC K | |w(t)

Definition Stabilization problem |

A+ BNC BM

Given ¥, find K, L, M, N such that A, = [ LC i

} satisfies o(A4.) C C_

Lemma Solution to the stabilization problem |

Let
e () be a stable state observer for
e F' solves the stabilization problem by static state feedback

£(t) = (A— GC + BF)&(t) + Gy(t)

u(t) = F&(t)
Then T solves the stabilization problem by dynamic output feedback.

Theorem |

There exists a dynamic output feedback controller T' stabilizing (A, B, C) if and only if
the matrix pair (A, B) is stabilizable and the matrix pair (A4, C) is detectable.

Algorithm Designing a dynamic output feedback controller for a model |

1. Write the model in state-space form
2. If nonlinear:
(a) Find an equilibrium point
(b) Linearize the system around the equilibrium
Check controllability /stabilizability
Check observability/detectability
Find F such that o(A+ BF) C C_
Find G such that (A — GC) c C_
Construct I'

NSt

6 Input-output properties

6.1 Impulse response matrix

Unique output solution of a linear system |

t
y(t; to, o, u) = CeAlt=t) 4 [ CeAt=T) By(r) dr + Du(t)
to

Theorem |

Let X(A, B,C, D) and X(4, B,C, D) be similar.
Then for any input function w : [0, 00) — R™, y(t;0,u) = g(¢;0, u)

Lemma |

1

5= —€<t<e
Define the function u. : R — R as u.(t) = < ¢ -

0  otherwise

¢
Define y.(t) = CeA""" Bu.(r)dr. Then El_i}rg)lJr Ye (1)

=B

CeA'B ift>0
0 ift<0

12



Definition Dirac delta functz’onl

A 7function” § : R — R with defining properties:
1. 6(t)=0forall t #0

2. For any continuous ¢ : R — R, / ot —T1)d(t) dt = ¢(t)

Definition Impulse response matrix |

The impulse response matrix for ¥ is H : R — RP*™ defined as

AtB 4+ D >
Ht) = Ce +Dé(t) t>0
0 t<O0

Theorem |

Consider ¥ with impulse response matrix H. Then

y(t;0,u) = /0 H(t — 7)u(r)dr

6.2 Transfer functions

Definition Exponentially bounded functionl

A function f :[0,00) — R is exponentially bounded if there exist some M, € R
such that |f(t)| < Me®t for all t.

Definition Laplace tmnsforml

For f exponentially bounded, its Laplace transform is

L(f)(s) = /000 f(t)e stdt  for s € C with R(s) > «

Theorem Properties of the Laplace transform |

L(f +9) = L(f) + L(g)
L(af) = aLl(f)
if f differentiable and f’ exp. bounded, L(f") = sL(f) — f(0)
if u,h:[0,00) = R exp. bounded,
t

then y(t) = /0 Jj(t —7)u(t)dr is exp. bounded and L(y) = L(h)L(u)

>0 =

Definition Transfer function matriz |

The transfer function of ¥ is T'(s) = C(sI — A)"'B+ D

Relation between Laplace transforms of input and output |

9(s) = T(s)a(s) where 4(s) = L({u)(s) and § = L(y(-;0,u))(s)

Theorem |

T(s) = L(H)(5)
for all s € C such that £(s) > A(A4), where A(4A) = max{R(\) | A € 0(4)}

Theorem |

If ¥(A, B,C,D) and %(A, B,C, D) are similar, then they have the same transfer function.

13



6.3 Transfer functions for SISO systems
A SISO system has a single input and a single output, i.e. m=1,p=1

Theorem |

Consider the system (A, B, C, D) with

[0 1 0 R 0 0 o
0 0 1 Ce 0 0 5
0O 0 0 :
A= B=|- C = [CO Cc1 C2 Cn—9 Cn—l]
: : : : 1 0 0
0 0 0 e 0 1 0
l—@0 —a1 —as --- —Qp—2 —Qp_1) _1_
Then, T'(s) = cno18" T +en28"+ .. +as+a

§" 4 Ap_18"" L Fan_9s"2 4+ ... +ais+ag

Theorem |

Consider the SISO system ¥ and let (A4, B) be controllable. Then, the polynomials
p(s) = Cadj(sI — A)B q(s) = Aa(s)

are coprime (i.e. they have no common roots) if and only if (A, C) is observable.

6.4 External stability

Transfer functions |

/
Scalar transfer function (SISO): T'(s) = pfs) =P (5)

a(s)  d'(s)
)

Matrix transfer function: T'(s) = ﬁP(s
q(s

p’,q" coprime

Definition Pole |

(Scalar case) A € C is a pole of T if is a root of ¢’
(Matrix case) A € C is a pole of T if it is a pole of at least 1 of its elements

Theorem |

1. If X e Cis apole of T, then A € 0(A)
2. If xe Ceo(A), (A, B) is controllable and (A, C') is observable, then A is a pole of T

Definition Internal and external stabilityl

A system X(A, B,C, D) is
e internally stable if (t) = Ax(t) is asymptotically stable
e externally stable if there exists v > 0 such that, for any bounded input function u : [0, 00) — R™,

sup |y(t;0,u)] <7 sup |u(t)] or |u(®)] <1 Vie[0,00) = |y(t;0,u)| <y Vi€ 0,00
teR teRy

Lemma |

(A, B,C, D) is externally stable <= 3(A, B, C,0) is externally stable
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Theorem |

The following are equivalent:
1. ¥ is externally stable
o0

2. / |CeABlldt < 00 (recall: ] = sup{ 12 | & £ 0})
0
3. lim CeMB =0

— 00
4. all poles of T are in C_

Theorem |

1. If ¥ is internally stable, then it is externally stable.

2. If ¥ is externally stable, the matrix pair (A, B) is controllable, and the matrix pair (4,C) is
observable, then ¥ is internally stable.
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